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Abstract. The two-dimensional modified step model with nearest-neighbour interaction 
C(e)=o for 101s ST, C(0)  = 1 for S l r < / f ( <  T and C ( 8 + 2 ~ ) =  C(0)  is studied by Monte 
Carlo simulation. Using Migdal transformations Barber found evidence of a phase transi- 
tion for this model for 0.05 e S 4 0.43. We have studied the model for S = 0.1 and S = 0.25 
on a number of finite lattices and also find evidence of a phase transition, with critical 
temperature T, 1.25 and T, ii. 1.5 respectively. 

1. Introduction 

In recent years the critical behaviour of two-dimensional planar lattice spin systems 
has attracted considerable interest. We can define the Hamiltonian for this general 
class of model by 

N 

H = - C  J,SI"'S:"' (1.1) 
( I J )  c Y = l  

where (J1 , .  . . , J N )  and (St'), . . . , Si") are N-dimensional interaction and spin vectors 
respectively and the scmmation is over nearest-neighbour lattice sites (U). J is an 
N-dimensional second-order diagonal tensor, but we use the conventional notational 
simplification of treating it as an N-dimensional vector. For N = 2 we can associate 
an angle 8, and interaction function C(0,)  with each vector S, and can write 

H = - J ~  c(e,-e,) (1.2) 
( I ! )  

where now J = J ,  = J2 corresponding to the isotropic case. 
The planar model is defined by 

c(e) = 1 -cos(e) 
and the step model by 

~ ( e + 2 ~ )  = c(e). 

c(e) = 1 - [ C O S ~ ( ~ / ~ ) ] P ~  

Domany er al (1984) defined the modified planar model by 

and Barber (1983) defined the modified step model by 

(1.4) 

(1.5) 

~ ( e + 2 ~ ) =  c(e). 
For p = 1, (1.5) reduces to the planar model interaction function, and for 6 = $, 
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(1.6) reduces to the step model interaction function. These functions are all shown in 
figure 1. 

The Monte Carlo method has gained increased popularity over recent years. Very 
recent work by Berretti and Sokal (1986) has called for greater statistical rigour to be 
used in Monte Carlo studies. Monte Carlo analyses of the planar model have been 
carried out by Miyashita er a1 (1978), Tobochnik and Chester (1979), Fucito (1983) 
and Fucito and Solomon (1984), and of the step model by Nymeyer and Irving (1986). 
The modified planar model has been studied by Domany et a1 (1984) and Van 
Himbergen (1984), also using the Monte Carlo technique, while the modified step 
model has been analysed by Barber (1983) using a Migdal renormalisation group 
scheme. 

While the step and planar models have apparently similar underlying symmetries, 
their behaviour in two dimensions appears to be radically different. From Mermin 
and Wagner (1966) we know that the planar model cannot undergo a conventional 
phase transition. Work by Kosterlitz and Thouless (1973) has shown that the planar 
model instead undergoes an unconventional phase transition. This transition occurs 
when the bound vortex-antivortex pairs which populate the low temperature phase 
begin to unbind. The low temperature phase is said to have topological long range order. 

The proof by Mermin and Wagner does not apply to the step model due to the 
discontinuous interaction function. The step model does not have a topologically 
induced phase transition. This is intuitively obvious (vortices do not provide any 
energy advantage) and has been shown by series analysis (Guttmann 1978, Nymeyer 
and Guttmann 1985). Other series analyses (Guttmann and Joyce 1973, Guttmann 
and Nymeyer 1978) have not found any evidence for a conventional (or unconventional) 
phase transition. Barber (1983) also finds no evidence of a phase transition for the 
step model. 

Recent Monte Carlo work by Domany er a1 (1984) and Van Himbergen (1984) 
have shown that quite dramatic changes in behaviour may occur for the modified 
planar model. The continuous phase transition of the planar model ( p  = 1) changes 
into a first-order transition as p increases. Van Himbergen suggests that the narrowness 
of the well (corresponding to large p )  is instrumental in this change of behaviour. A 
narrow well inhibits the formation of vortex-antivortex pairs at low temperature. If 
p is large enough, as the critical temperature is approached large number of vortices 
will be formed very suddenly, and lead to a first-order transition. The critical value 
of p appears to be 3. 

This paper follows an earlier paper (Nymeyer and Irving 1986, hereafter referred 
to as I )  in which we studied the step and planar models using the Monte Carlo 
technique. In I we found evidence to suggest that there is no phase transition for the 
step model. In this paper we carry out a similar analysis on the modified step model 
to determine the effect of a narrow well in the interaction function on the thermodynamic 
behaviour. Increasing p in the case of the modified planar model and decreasing S in 
the case of the modified step model reduces the size of the well in the interaction 
function (see figure 1). 

Barber (1983) first studied the modified step model. He applied a Migdal transfor- 
mation to a number of planar spin systems on a number of regular planar lattices. At 
a given temperature, repeated applications (iterations) of the transformation can result 
in a ‘fixed point’. In the planar model the low temperature region is populated by an 
infinite number of ‘fixed points’ corresponding to a line of critical points. In the step 
model all temperatures iterate to the infinite-temperature ‘fixed line’. The step model 
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Figure 1. The interaction functions of the A, step model; B, planar model; C, 8 =0.1 
modified step model and D, p = 6 modified planar model. 

is therefore ‘stuck’ in the disordered phase. In the modified step model, on the other 
hand, there is evidence of a ‘fixed line’ for 0.05 4 S 6 0.43, and so for these values of 
6 the modified step model should undergo a phase transition. 

Our aim in this paper is to confirm Barber’s results by studying the modified step 
model with S < 4 and comparing with the step model ( 8  = 4). In particular we analyse 
the S = 0.1 and 6 = 0.25 (modified step) models. To check the equilibration time of 
the system and the independence of the data we have carried out an autocorrelation 
analysis as part of our Monte Carlo analysis. 

2. Results 

The Metropolis Monte Carlo scheme we have used is similar to the scheme outlined 
in Tobochnik and Chester (1979). 

For a given box size ( n  x n ) ,  we use a hot start (all spins pointing in a random 
direction) at T = 3.0, and equilibrate the system with either 1000 or 5000 sweeps through 
the lattice. We then carry out a further 2000 sweeps, which are broken up into 10 
blocks of 200 sweeps. Each of the calculated thermodynamic variables are averaged 
over each block of spins, and then averaged again over the 10 blocks. This provides 
one data point, which is considered to be independent. The temperature is decremented 
and the process repeated using the last configuration at the previous (higher) tem- 
perature as the starting configuration. When the lowest temperature is reached ( T  = 
0.25), we have completed the cooling cycle, and have one data point for each tem- 
perature. We then repeat the process in the reverse direction, increasing the temperature 
at each step, until the highest temperature is again reached. This gives us a second 
data point at each temperature. The two data points are averaged. Subaverages are 
checked for drift (i.e. any monotonic movements) and for consistency. 

For each of the three models (i.e. the S = 0.5, S = 0.25 and 6 = 0.1 models) we have 
carried out the above procedure on the 8x8, 16x  16, 32x32, 64x64 and 1OOx 100 
spin lattices. For each lattice, averages were calculated at 21 temperatures between 
T = 0.25 and T = 3.0. 

The thermodynamic quantities that we studied are the energy per spin, specific 
heat, mean square angular displacement, correlation function and susceptibility. As 
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in I we define these by 

energy: ( E )  = N-’( H) 

specific heat: C , = P 2 N - ’ ( ( E 2 ) - ( E ) ’ )  

correlation function: c(r)  C COS(^, - e,)) 

susceptibility: x =  c(i) 
1 = 1  

where the lattice is of size n x n = N and T = l/PJ. The mean-square angular displace- 
ment (e’) is calculated by subtracting from each angle Bi the average spin direction. 

The behaviour of the above functions for the (isotropic) S = 0.5 model was studied 
in detail in I .  Corresponding results forthe S = 0.1 and S = 0.25 models will be described 
in this paper. 

It is a simple calculation to show that in the infinite temperature limit the average 
energy per spin for the modified step model is 2( 1 - 2s).  This is consistent with the 
behaviour shown in figure 2 where we plot ( E ) /  N for the S = 0.5,0.25 and 0.1 models 
on the 64 x 64 lattice. 

T 

Figure 2. Plot of energy per spin against temperature. U(+), O(X)  a n d o ( * )  correspond 
to the cooling (heating) cycle for the S = 0.5, S = 0.25 and S = 0.1 models (respectively) on 
the 64 x 64 lattice. 

Notice that there is a large discrepancy between the heating and cooling data 
at T = 1.2 (6  = 0.1 model) and a somewhat smaller discrepancy at T = 1.5 (8  = 0.25 
model). It has proved difficult to determine the cause of these discrepancies due to 
the steep slope of the energy curves and the unstable behaviour of the models of these 
temperatures. To overcome these problems very long runs (up to 4 x 10’ sweeps) were 
carried out using different starting conditions. No clear picture emerged however. The 
energy jumped between high and low temperature values erratically, particularly on 
the smaller lattices. On the larger lattices it was not possible to use enough sweeps to 
reduce the size of the confidence intervals sufficiently. 

Note that none of these behavioural problems occurred with the 6 =0.5 model 
(see I ) ,  where the energy data were found to be well behaved and showed no signs of 
‘discrepancies’ or hysteresis. 
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In figure 3 we plot the behaviour of the specific heat for each of the three models. 
Two sets of data are shown. The curve joins data points which are averages of the 
heating and cooling data for all the lattices. The extra data points, the crosses and 
open squares, correspond to longer runs at the ‘peaking’ temperatures on the 16 x 16 
and 32 x 32 lattices respectively. Each of these extra data points is an average over 
2000 sweeps of the lattice. Between each block of 2000 sweeps, 8000 sweeps were 
carried out to ensure independence of the data. For comparison purposes we also 
carried out an extra run at T = 1 . 1 .  

We estimate that the peaks occur at T = 1.25 for the 6 = 0.1 model, and T = 1.5 for 
the 6 = 0.25 model, while for 6 = 0.5 there is no apparent peaking (see figure 2 in I). 

Following Tobochnik and Chester (1979), we studied the mean-square angular 
displacement (e’), shown in figure 4 ( a )  (6 =0.25 model), figure 4(b) (6 =0.1 model) 
and figure 4 ( c )  (6 = 0.5 model). 

If we integrate 8’ over all minimum energy configurations (low temperature) we find 
0.822 6 = 0.5 

0.033 6=O.l  * 

ILT(62)=L{6n  287F -6* o ld@=(  0.206 8 ~ 0 . 2 5  (2.2) 

At high temperature, where spins are pointing in random directions, we have 

I H T (  e’) = r 2 / 3  a 3.29. (2.3) 

This behaviour is consistent with that shown in figures 4 ( a )  and 4 ( b ) .  Note the 
differences in behaviour between the 6 = 0.25 and 6 = 0.1 models shown in figures 4 ( a )  
and 4( b )  and the 6 = 0.5 model shown in figure 4( c). The jump in (e’) is much sharper, 
and the lattice contours are rapidly converging to T = 1.25 (6 = 0.1 model) and T = 1.5 
( 6  = 0.25 model). 

b 
p 6 = 0 1  
F 

C” i 
I 
I 

l o t  

1 

Figure 3. Plot of the specific heat against temperature for the 6 = 0.5, 6 = 0.25 and 6 = 0.1 
models. The dots are averages over all lattices and are joined by a curve as a guide. The 
crosses and open squares are further averages taken using the 16 x 16 and 32 x 32 lattices 
(respectively). 
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Figure 4. Plot of (e2) against temperature for ( a )  the 8 =0.25 model, ( b )  8 =0.1 model 
and ( c )  8 = 0 . 5 m o d e l o n t h e 4 ~ 4 ( ' J ) , 8 ~ 8  (U), 1 6 x l 6 ( A ) , 3 2 ~ 3 2  ( 0 ) , 6 4 ~ 6 4 ( R ) a n d  
100 x 100 (B) lattices. 

The behaviour of C(n/2)  is shown in figures 5 ( a )  and 5 ( b )  for the 6 = 0.25 and 
6 = 0.1 models respectively. Since n x n = N is the lattice size, n/2 is the maximum 
effective distance we can calculate the correlation function. 

We can again approximate the low temperature behaviour by integrating over the 
well in the interaction function, i.e. 

0.637 6 = 0.5 

0.984 6 = 0.1 
cos( e )  d e  = 0.900 6 = 0.25 (2.4) 

(2.5) 
Again there is a striking difference between the behaviour of the 6 = 0.1 and 6 = 0.25 

models (figures 5 ( a )  and 5(b)) and the S = 0.5 model (figure 4 in I). We argued in I 
that the behaviour of the correlation function in a finite system can provide evidence 
of a phase transition in an infinite system. C(n/2)  will have 'step function'-like 

[ ILT(COS( e ) )  =- 
26T r= -aT 

and of course at high temperature we have that 
IHT(cos( e ) )  = 0. 
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i o )  
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T T 

Figure 5. Plot of the correlation function against temperature for spins n / 2  sites apart for 
the ( a )  S = O . 2 5  model and the ( b )  S = O . 1  model on the 4 x 4  (V), 8 x 8  (U),  16x16 (A) ,  
3 2  x 3 2  (0), 64 x 64 (a) and 100 x 100 (B) lattices. 

behaviour centred on a pseudo-critical point TC,”. If there is a phase transition, as n 
increases the underlying ‘step function’ will become sharper, and Tc,” will converge 
to the ‘real’ critical temperature T,. 

This is precisely the behaviour we can see in figures 5 ( a )  and 5 ( b ) ,  and the critical 
temperatures T = 1.25 (6  = 0.1 model) and T = 1.5 (6 = 0.25 model) are indicated. This 
contrasts with the behaviour shown in figure 4 in I (6 = 0.5 model). 

In figure 6 we plot the behaviour of the susceptibility for the 6 = 0.1 and 6 = 0.5 
models. The sharp increase in x for the 6 = 0.1 model occurs at T =  1.25. 

2 0  - t 4 
1 . f .  + 

I f +  + 

* i  

* A *  

1 0  2 0  30 
T 

Figure 6. Plot of the susceptibility against temperature of the S = 0.5 model (crosses) and 
S =0.1 model (open squares) on the 3 2 x 3 2 ,  64x64 and lOOx 100 lattices (in ascending 
order). 
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Figure 7. Typical (16x 16) spin configurations for the S =0.1 model at ( a )  T=0.25,  ( b )  
T =  1.1, ( c )  T =  1.2 and ( d )  T -  1.3. 
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In figures 7(a)-7(d) we show typical spin configurations for the 6 =0.1 model at 
T = 0.25, 1 . 1 ,  1.2 and 1.3 respectively. In figure 8 we show the 6 = 0.5 model at T = 0.25 
only. At each of these temperatures the lattice was hot started and allowed to equilibrate 
over 4000 sweeps. A cold start showed the same behaviour, as did varying the lattice 
size. 

While the 6 = 0.5 model (figure 8) appears to be disordered at even its ‘lowest’ 
temperature, the 6 = 0.1 model shows a remarkable degree of alignment for T S  1.2. 
Above this temperature the system appears to be disordered. For the 6 = 0.25 model 
the spins are ordered for T G  1.5,  and disordered above. So, while the 6 = 0.1 and 
6 = 0.25 models appear to have an ordered low temperature phase, the 6 = 0.5 model 
apparently has only a single disordered phase. 

A time series analysis was also carried out on the data. The procedure is the same 
as that outlined in I, and uses the expression 

1 1 - 1  

1 - t  , = I  
F ( t )  =- c (xz -X)(x~+,-X,+~)/slsl+l 

where 1 is the run length, t E [0,1- 11 and x is the sample data with 
I .  

XI = X J ( 1 -  t )  
i= 1 

I 

The aim of this analysis is to measure the independence of the data. This is 
necessary if meaningful statistical averages and errors are to be calculated. This analysis 
was only carried out on the 16 x 16 and 32 x 32 lattices. The results for the 6 = 0.5 
model are outlined in I .  Only the S = 0.1 model behaviour will be described here. 

The autocorrelation time t ,  is the shortest time t = t ,  such that F(t,)s0.1. In 
practice it is necessary to use a run length 1 >> t ,  otherwise ‘noise’ will swamp the 
behaviour of F (  t ) .  

A small value of t , ,  and small frequently oscillating behaviour for F (  t ) ,  suggests 
the data are essentially uncorrelated. We expect this type of behaviour at high 
temperature. A large value of t ,  means the data are correlated and can be the result 
of critical ‘slowing down’. 

The procedure used was first to generate all the data points. These data points are 
the energy and magnetisation after each sweep of the lattice. From these data all the 
required thermodynamic functions can be calculated. At each temperature the energy 
data were analysed using (2.6), and values of 1 of 2000 and 4000. 

The resulting function at temperatures T = 0.5, 1.25 and 2.5 for t < 200 is plotted 
in figure 9. In general, at low and high temperature the behaviour of F (  t )  was fairly 
consistent. Near criticality, at T = 1.2 and T = 1.3 there was some erratic behaviour, 
and at T = 1.25 it took a large number of sweeps for F (  t )  to settle down. The erratic 
behaviour was worst for the smaller lattices. For these lattices the location of the 
energy jump was somewhat ‘blurred’, in that the system would often jump between 
low and high temperature energy levels. As the lattice size increased, this effect became 
less apparent. 

From the behaviour of F ( t ) ,  t ,  was estimated. In the low temperature region (i.e. 
T < 1.2) we found 10 C ta S 20, and in the high temperature region ( T > 1.3), 2 s t, Q 10. 
At T = 1.25 we estimated t , -75.  



2192 A Nymeyer 
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50 150 
t 

Figure 9. Typical behaviour of F( f )  for the energy of the 6 = 0.1 model at A, T = 0.5; B, 
T = 1.25 and C, T = 2.5. 

Given a value for fa we consider every tath energy data point to be independent, 
and using this we can calculate the average energy and standard errors. In table 1 we 
list the results for the energy at T=0.5, 1.25 and 2.5. Notice the difference in the 
energy at T = 1.25 for the smaller lattices. A large number of sweeps (-8 x los) was 
carried out to verify that the system was properly equilibrated. 

While the energy did show a ‘small n’ effect, all the results obtained in the 
autocorrelation analysis are consistent with those given earlier. 

Table 1. The energy per spin of the S = 0.1 model on various lattices. 

T = 0.5 T =  1.25 T = 2.50 

8 x 8  - 1.9870 f 0.0001 -0.845 * 0.005 1,1944- 0.0010 
16x 16 -1.9863 *0.0001 -0.25 1 * 0.008 1.1969*0.0007 
32 x 32 -1.9863 iO.0001 -0.045 f 0.003 1.1966 * 0.0004 
64 x 64 - 1.9862 * 0.0003 -0.048 f 0.002 1.1965 * 0.0002 
l O O X  100 -0.045 

3. Discussion 

It appears likely that the modified step model for 6 = 0.1 and 6 = 0.25 undergoes some 
kind of phase transition. All the thermodynamic quantities studied show an abrupt 
change in behaviour at T 

We have not been able to confirm or deny the existence of hysteresis for these 
models, probably because of the large temperature grid that we have used. Note, 
however, that no evidence for hysteresis was found for the 6 =$  model in I. 

The specific heat is poorly behaved, but did reveal large sharp peaks at the above 
temperatures for the 6 = 0.1 and 6 = 0.25 models in contrast to the ‘flat’ behaviour of 

1.25 (8  = 0.1) and T = 1.5 ( 6  = 0.25). 
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the 6 = f model. The behaviour of the correlation function suggests quite strongly that 
a critical point does exist for the 6 = 0.1 and 6 = 0.25 models, but not for the S = f 
model. Both the mean angular displacement and the susceptibility show sharp ‘step 
function’-like behaviour at the above temperatures. 

These results confirm the results of Barber (1983). He finds that while the step 
model is ‘stuck’ in a disordered phase, the modified step model for 0.05 6 6 6 0.43 does 
appear to undergo a phase transition, and estimates T = T, = 1.45 ( 6  = 0.1) and T = T, = 
1.8 (6  = 0.25). While these estimates are slightly larger than ours they are, given the 
possible errors inherent in the Monte Carlo and Migdal methods, not unreasonably so. 

Van Himbergen (1984) has suggested that the modified planar model undergoes a 
different type of transition to the ordinary planar model due to the inhibiting effect of 
the narrow-well interaction function on the formation of vortices at low temperature. 
While this mechanism is obviously not at work in the modified step model, our results 
are qualitatively consistent with those of Domany et a1 and Van Himbergen who find 
increasingly ‘strong’ critical behaviour as the interaction function is more highly 
modified. 
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